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1 Introduction and motivation

In this paper, we devote our attention to the existence of non-trivial weak solutions for nonlocal
(Kirchhoff type) parabolic equations. More precisely, we deal with a class governed by the
following parabolic initial-boundary problem:

∂u

∂t
−M

(∫
Ω
A(x, t,∇u) dx

)
div
(
a(x, t,∇u)

)
= g(x, t) in Q,

u(x, t) = 0 on ∂Q,
u(x, 0) = u0(x) on Ω,

(1)

where Ω ⊂ RN (N ≥ 2) is an bounded open set with smooth boundary ∂Ω, and p be a
real number such that 2 < p < ∞, −div

(
a(x, t,∇u)

)
is a Leray-Lions operator acting from

V := Lp(0, T ;W 1,p
0 (Ω)) to its dual V∗ := Lp

′
(0, T ;W−1,p′(Ω)). For T > 0, Q = Ω × (0, T )

denotes the cylinder and ∂Q = ∂Ω× (0, T ) its boundary. Here, g belongs to V∗.
The problem of the above form (1) is called a non-local problem because due to the presence

of the term M , it is no longer a point identity, which causes some mathematical difficulties and
also makes the consideration of such a problem particularly interesting. Especially, Problem
(1) belongs to parabolic Kirchhoff equation which has seen significant success in the study of
population dynamics in recent years Tuan (2020). Moreover, many other phenomena, such as
nonlinear elasticity, non stationary fluids, image recovery, and so on, can be modelled using
equations like (1), see for example Autuori et al. (2010); Caraballo et al. (2016); Yacini et al.
(2021); Temghart et al. (2021).

The nonlocal operator M
(∫

Ω
A(x, t,∇u) dx

)
div
(
a(x, t,∇u)

)
generalizes the term(

a+ b

∫
Ω
|∇u|2dx

)
4u of the Kirchhoff equation, introduced by Kirchhoff (1883) in their study
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of the oscillations of stretched strings and plates, More precisely, Kirchhoff proposed a model
given by the equation

ρ
∂2u

∂t2
−
(ρ0

h
+
E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u

∂x2
= 0 (2)

where ρ, ρ0, h, E, L are all constants, this equation is an extension of the classical d’Alembert’s
wave equation for free vibrations of elastic strings by considering the effect of a change in the
length of the string during the vibration. However, this type of problem drew the interest of
many authors, mostly After the groundbreaking work of Lions (1978), in which a functional
analysis technique was proposed to attack it. Since then dozens of articles have fallen, we can
cite in particular the works of Chipot & Lovat (1997); Chipot et al. (1992), Corrêa et al. (2004);
Corrêa & Figueiredo (2009) and their references.

Now, we present the framework for the results in this paper. Starting with the simplest case
M = 1, we refer to the pioneering paper by Lions (1969), in which the existence of the solution
u ∈ V is established for the following nonlinear parabolic Cauchy-Dirichlet problem

∂u

∂t
− div

(
a(x, t, u,∇u)

)
= f(x, t), (x, t) ∈ Q,

u(x, 0) = 0, x ∈ Ω,
u(x, t) = 0, (x, t) ∈ Γ,

(3)

where −div
(
a(x, t, u,∇u)

)
is a pseudo-monotone, coercive, uniformly elliptic operator from V

into V∗ and f belongs to V∗. Following that, in Boccardo et al. (1999) were interested in some
existence and regularity results for the solutions of (3), depending on the summability of the
data f . In this regard, we mention the works Afraites et al. (2022); Asfaw (2017); Hammou &
Azroul (2020); Nachaoui et al. (2021, 2016); Rasheed et al. (2021) for more details.

On the other hand, when A(x,∇u) = |∇u|2 and f(x, t) = |u|q−1u, Han et al. (2018) discussed
the global existence and finite time blow-up of solutions when the initial energy is subcritical,
critical, or supercritical to the parabolic problem with nonlocal diffusion coefficient.

Fu et al. (2016) studied the following parabolic initial boundary problem for nonlocal (Kirch-
hoff type) parabolic equations involving variable exponent

∂u

∂t
−
[
a+ b

(∫
Ω

|∇u|p(x,t)

p(x, t)
dx
)r(t)]

div
(
|∇u|p(x,t)−2∇u

)
+ |u|p(x,t)−2u

= f(x, t, u), (x, t) ∈ Ω× (0, T ),
u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = u0(x), x ∈ Ω.

Here a, b are given positive constants, Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth
boundary ∂Ω. Based on suitable conditions on u0 and the hypotheses on the functions r, p, f .
The authors proved the local existence of weak solutions by means of the Galerkin approximation
method.

Motivated by the above papers, we establish the existence of weak solutions to (1) in the
space V by applying the topological degree method. However, the topological degree theory
has been used extensively in the study of nonlinear differential equations as a very successful
tool, especially those of elliptic type. For more information on the history of this theory and its
applications, see for example Abbassi et al. (2020b,a, 2021); Allalou et al. (2021); Adhikari et
al. (2021); Berkovits et al. (1992); Berkovits (2007); Cho & Chen (2006).

This document is structured as follows: In the next section, we present the main results of
this article. In section 3, we state some necessary preliminary results and we give some related
lemmas that will be used in the proof of the main results. Section 4 is devoted to the proof of
the main results.
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2 The main theorem

In this section, we will give our main theorem. For this, we list our assumptions associated with
our problem to show the existence results.

From new on, we always assume that a(x, t, ξ) : Q×RN −→ RN is a Carathéodory vector-
valued function, such that a(x, t, ξ) = ∇ξA(x, t, ξ), where A(x, t, ξ) : Q × RN −→ R. Suppose
that a and A satisfy the following hypotheses, for a. e. in (x, t) ∈ Q and all ξ, ξ′ ∈ RN , (ξ 6= ξ′).

(A1) A(x, t, 0) = 0,

(A2) a(x, t, ξ) · ξ ≥ α|ξi|p,

(A3) |a(x, t, ξ)| ≤ β
(
d(x, t) + |ξ|p−1

)
,

(A4) [a(x, , t, ξ)− a(x, t, ξ′)] · (ξ − ξ′) > 0,

where α, β are some positive constants and k(x, t) is a positive function in Lp
′
(Q) (p′ is the

conjugate exponent of p).
Furthermore,

(M0) M : R+ → R+ is continuous and non-decreasing function, for which there exist two
positive constant m0 and m1 such that m0 ≤M(s) ≤ m1 for all s ∈ [0,+∞[.

Now, we present our main result.

Theorem 1. Suppose that the hypotheses (A1) − (A4) and (M0) hold. Then for g ∈ V∗ and
u0 ∈ L2(Ω), problem (1) has a weak solution u ∈ D(L) in the following sense

−
∫
Q
uvtdxdt+

∫ T

0
M
(∫

Ω
A(x, t,∇u)dx

)∫
Ω
a(x, t,∇u)∇vdxdt =

∫
Q
gvdxdt, (4)

for all v ∈ V.

3 Preliminaries

In this part, we present functional framework required to investigate the problem (1), as well as
the fundamental definitions and theorems of topological degree theory that are relevant to our
goal.

Let Ω ⊆ RN be a bounded open set with smooth boundary. Let p ≥ 2 and p′ =
p

p− 1
. We

will denote by Lp(Ω) the Banach space of all measurable functions u defined in Ω such that

‖u‖Lp(Ω) =
(∫

Ω
|u(x)|pdx

)1/p
<∞.

We define the functional space W 1,p
0 (Ω) as the closure of C∞0 (Ω) in the Sobolev space

W 1,p(Ω) =
{
u ∈ Lp(Ω) : ∇u ∈ Lp(Ω)

}
,

with respect to the norm

‖u‖1,p =
(
‖u‖pLp(Ω) + ‖∇u‖pLp(Ω)

)1/p
.

According to the Poincaré inequality, the norm ‖ · ‖1,p on W 1,p
0 (Ω) is equivalent to the norm

‖ · ‖
W 1,p

0 (Ω)
setting by

‖u‖
W 1,p

0 (Ω)
= ‖∇u‖Lp(Ω) for u ∈W 1,p

0 (Ω).
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Remember that the Sobolev space W 1,p
0 (Ω) is a uniformly convex Banach space and the embed-

ding W 1,p
0 (Ω) ↪→↪→ Lp(Ω) is compact (see Zeider (1990)).

Following that, we consider the functional space

V := Lp(0, T ;W 1,p
0 (Ω)), (T > 0)

that is a separable and reflexive Banach space with the norm

|u|V =
(∫ T

0
‖u‖p

W 1,p
0 (Ω)

dt
)1/p

or, by the Poincaré inequality, the equivalent norm in V given by

‖u‖V =
(∫ T

0
‖∇u‖pLp(Ω)dt

)1/p
.

Next, we give some results and properties from the Berkovits and Mustonen degree theory for
demicontinuous operators of generalized (S+) type in real reflexive Banach. We start by defining
some classes of mappings. In what follows, let X be a real separable reflexive Banach space with
dual X∗ and with continuous dual pairing 〈 · , · 〉 and given a nonempty subset Ω of X, and ⇀
represents the weak convergence.
Let T from X to 2X

∗
be a multi-values mapping. We denote by Gr(T ) the graph of T , i.e.

Gr(T ) =
{

(u, v) ∈ X ×X∗ : v ∈ T (u)
}
.

Definition 1. The multi-values mapping T is called

1. monotone, if for each pair of elements (η1, θ1), (η2, θ2) in Gr(T ), we have the inequality

〈θ1 − θ2, η1 − η2〉 ≥ 0.

2. maximal monotone, if it is monotone and maximal in the sense of graph inclusion among
monotone multi-values mappings from X to 2X

∗
. An equivalent version of the last clause

is that for any (η0, θ0) ∈ X ×X∗ for which 〈θ0− θ, η0− η〉 ≥ 0, for all (η, θ) ∈ Gr(T ) , we
have (η0, θ0) ∈ Gr(T ).

Let Y be another real Banach space.

Definition 2. A mapping F : D(F ) ⊂ X → Y is said to be

1. demicontinuous, if for each sequence (un) ⊂ Ω, un → u implies F (un) ⇀ F (u) .

2. of type (S+), if for any sequence (un) ⊂ D(F ) with un ⇀ u and lim sup
n→∞

〈Fun, un−u〉 ≤
0, we have un → u.

Let L : D(L) ⊂ X → X∗ be a linear maximal monotone map such that D(L) is dense in
X.
In the following, for each open and bounded subset G on X, we consider classes of operators :

FG(Ω) :=
{
L+ S : G ∩D(L)→ X∗ | S is bounded, demicontinuous

and of type (S+) with respect to D(L) from G to X∗
}
,

HG :=
{
L+ S(t) : G ∩D(L)→ X∗ | S(t) is a bounded homotopy

of type (S+) with respect to D(L) from G to X∗
}
.

357



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.8, Special Issue, 2023

Remark 1. Berkovits et al. (1992) Remark that the class HG contains all affine homotopy

L+ (1− t)S1 + tS2 with (L+ Si) ∈ FG, i = 1, 2.

We give the Berkovits and Mustonen topological degree for a class of demicontinuous operator
satisfying condition (S+)T for more details see Berkovits et al. (1992).

Theorem 2. Let L a linear maximal monotone densely defined map from D(L) ⊂ X to X∗ and

M =
{

(F,G, h) : F ∈ FG, G an open bounded subset in X, h 6∈ F
(
∂G ∩D(L)

)}
.

There exists a unique degree function d : M −→ Z which satisfies the following properties :

1. (Normalization) L+ J is a normalising map, where J is the duality mapping of X into
X∗, that is, d(L+ J,G, h) = 1, when h ∈ (L+ J)(G ∩D(L)).

2. (Additivity) Let F ∈ FG. If G1 and G2 are two disjoint open subsets of G such that
h 6∈ F

(
(G\(G1 ∪G2)) ∩D(L)

)
then we have

d(F,G, h) = d(F,G1, h) + d(F,G2, h) .

3. (Homotopy invariance) If F (t) ∈ HG and h(t) 6∈ F (t)(∂G ∩D(L)) for every t ∈ [0, 1],
where h(t) is a continuous curve in X∗, then

d(F (t), G, h(t)) = constant, ∀t ∈ [0, 1].

4. (Existence) if d(F,G, h) 6= 0, then the equation Fu = h has a solution in G ∩D(L).

Lemma 1. Let L+ S ∈ FX and h ∈ X∗. Suppose that there exists R > 0 such that

〈Lu+ Su− h, u〉 > 0, (5)

for any u ∈ ∂BR(0) ∩D(L). Then

(L+ S)(D(L)) = X∗. (6)

Proof. Let ε > 0, t ∈ [0, 1] and

Fε(t, u) = Lu+ (1− t)Ju+ t(Su+ εJu− h).

As 0 ∈ L(0) and applying the boundary condition (5), we have

〈Fε(t, u), u〉 = 〈t(Lu+ Su− h, u〉+ 〈(1− t)Lu+ (1− t+ ε)Ju, u〉
≥ 〈(1− t)Lu+ (1− t+ ε)Ju, u〉
= (1− t)〈Lu, u〉+ (1− t+ ε)〈Ju, u〉
≥ (1− t+ ε)‖u‖2 = (1− t+ ε)R2 > 0.

Which means that 0 6∈ Fε(t, u). Since J and S + εJ are bounded, continuous and of type (S+),
{Fε(t, ·)}t∈[0,1] is an admissible homotopy. Hence, by using the normalisation and invariance
under homotopy, we get

d(Fε(t, ·), BR(0), 0) = d(L+ J,BR(0), 0) = 1.

As a result, there exists uε ∈ D(L) such that 0 ∈ Fε(t, ·).
If we take t = 1 and when ε→ 0+, then we have h ∈ Lu+Su for some u ∈ D(L). Since h ∈ X∗
is arbitrary, we deduce that (L+ S)(D(L)) = X∗.
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4 Proof of Theorem 1

In this section, we give the proof of the main theorem. for that, we transform this nonlinear
parabolic problem of Kirchhoff type (1) with Dirichlet boundary condition into a new one gov-
erned by operator equation of the form Lu + Fu = g. Then, using the theory of topological
degrees introduced in the above section, we show the existence of weak solutions to the state
problem. First, we give several lemmas.

Lemma 2. Arosio & Panizzi (1996) Let g ∈ Lr(Q) and gn ⊂ Lr(Q) such that ‖gn‖r,ν ≤
C, 1 < r <∞, If gn(x)→ g(x) a.e. in Q then gn ⇀ g weakly in Lr(Q).

Lemma 3. Arosio & Panizzi (1996) Assume that (A2)-(A4) hold, let (un)n be a sequence in V
such that un ⇀ u weakly in V and∫

Q

[
a(x, t,∇un)− a(x, t,∇u)

]
∇(un − u)dx −→ 0, (7)

then un −→ u strongly in V.

Let us consider the following functional

E(u) =

∫ T

0
M̂
(∫

Ω
A(x, t,∇u)dx

)
dt, for every u ∈ V

where M̂ : [0,+∞[−→ [0,+∞[ be the primitive of the function M , defned by

M̂(s) =

∫ s

0
M(ξ)dξ.

It is well known that E is well defined and continuously Gâteaux differentiable whose Gâteaux
derivatives at point u ∈ V is the functional E ′(u) ∈ V∗ setting by

〈E ′(u) , v〉 = 〈Fu , v〉, for all u, v ∈ V

where the operator F acting from V to its dual V∗ is defined by

〈Fu , v〉 =

∫ T

0
M
(∫

Ω
A(x, t,∇u)dx

)∫
Ω
a(x, t,∇u)∇vdxdt (8)

for all u, v ∈ V.

Proposition 1. Suppose that (M0),(A1)− (A4) hold, then

(i) F is bounded, strictly monotone, continuous operator.

(ii) F is of type (S+).

Proof. i) It is clear that F is continuous, because F is the Fréchet derivative of E .
First of all, let’s prove that the operator F is bounded.
Let u, v ∈ V, by the Hölder’s inequality and (M0), we obtain

| < Fu, v > | =
∣∣∣ ∫ T

0
M
(∫

Ω
A(x, t,∇u)dx

)∫
Ω
a(x, t,∇u)∇vdxdt

∣∣∣
≤
∫ T

0
m1

∫
Ω
|a(x, t,∇u)∇v|dxdt

≤ m1

∫ T

0
‖a(x, t,∇u)‖Lp′ (Ω)‖∇v‖Lp(Ω)dt.
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From the growth condition (A3), we can easily show that ‖a(x, t,∇u)‖Lp′ (Ω) is bounded

for all u in W 1,p
0 (Ω). Therefore

|〈Fu, v〉| ≤ const
∫ T

0
‖∇v‖Lp(Ω)dt.

According to the continuous embedding V ↪→ L1(0, T,W 1,p
0 (Ω)), we have

|〈Fu, v〉| ≤ const ‖∇v‖V ,

as a result the operator F is bounded.

Next, we prove that F is strictly monotone operator.
For that, we consider the functional B : W 1,p

0 (Ω)→ R setting by

B(u) =

∫
Ω
A(x, t,∇u)dx for all u ∈W 1,p

0 (Ω),

so B ∈ C1(W 1,p
0 (Ω, w),R) and

〈B′(u), v〉 =

∫
Ω
a(x, t,∇u)∇vdx for all u, v ∈W 1,p

0 (Ω).

By using (A4), we obtain for any u, v ∈W 1,p
0 (Ω) with u 6= v

〈B′(u)−B′(v), u− v〉 > 0

which implies that B′ is strictly monotone. Thus, by Prop. 25.10 in Zeider (1990), B is

strictly convex. Furthermore, as M is nondecreasing, then M̂ is convex in [0,+∞[. So, for
any u, v ∈ X with u 6= v, and every s, r ∈ (0, 1) with s+ r = 1, we have

M̂(B(su+ rv)) < M̂(sB(u) + rB(v)) ≤ sM̂(B(u)) + rM̂(B(v)).

This proves that E is strictly convex, since E ′(u) = F (u) in V∗, then we infer that F is
strictly monotone in V.

ii)− It remains to prove that the operator F is of type (S+).
Let (un)n be a sequence in D(F ) such that un ⇀ u in V

lim sup
n→∞

〈Fun, un − u〉 ≤ 0.

We will show that un → u in V.
On the one hand, in fact un ⇀ u in V, so (un)n is a bounded sequence in V, then there
exist a subsequence still denoted by (un)n such that un ⇀ u in V, under the strict
monotonicity of F we get

0 = lim sup
n→∞

〈Fun − Fu, un − u〉 = lim
n→∞

〈Fun − Fu, un − u〉.

Then
lim
n→∞

〈Fun, un − u〉 = 0 and lim
n→∞

〈Fu, un − u〉 = 0,

which means

lim
n→∞

∫ T

0
M
(∫

Ω
A(x, t,∇un)dx

)∫
Ω
a(x, t,∇un)∇(un − u)dxdt = 0, (9)
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and

lim
n→∞

∫ T

0
M
(∫

Ω
A(x, t,∇u)dx

)∫
Ω
a(x, t,∇u)∇(un − u)dxdt = 0. (10)

On the one hand, according to (M0) we obtain

m0

∫
Q
a(x, t,∇u)∇(un − u)dxdt

≤
∫ T

0
M
(∫

Ω
A(x, t,∇u)dx

)∫
Ω
a(x, t,∇u)∇(un − u)dxdt

≤ m1

∫
Q
a(x, t,∇u)∇(un − u)dxdt. (11)

By combining (10) and (11) we deduce that

lim
n→∞

∫
Q
a(x, t,∇u)∇(un − u)dxdt = 0. (12)

On the other hand, by (A1) we have for any x ∈ Ω and ξ ∈ Rn

A(x, t, ξ) =

∫ 1

0

d

ds
A(x, t, sξ)ds =

∫ 1

0
a(x, t, sξ)ξds

By combining (A3), Fubini’s theorem and Hölder’s inequality we have∫
Ω
A(x, t,∇un)dx =

∫
Ω

∫ 1

0
a(x, t, s∇un)∇undsdx

=

∫ 1

0

∫
Ω
a(x, t, s∇un)∇undxds

≤
∫ 1

0
β

∫
Ω

(
d(x, t)|∇un|+ |s∇un|p

)
dxds

≤ β
∫

Ω
|d(x, t)||∇un|dx+

∫ 1

0

∫
Ω
sp|∇un|p

)
dxds

≤ C1‖un‖p
W 1,p

0 (Ω)
+ C ′

∫
Ω
|∇un|pdx

≤ C‖un‖p
W 1,p

0 (Ω)
.

Then, we infer that
(∫

Ω
(A(x, t,∇un)dx

)
n≥1

is bounded.

As M is continuous, up to a subsequence there is s0 ≥ 0 such that

M
(∫

Ω
(A(x, t,∇un)dx

)
−→M(s0) ≥ m0 as n→∞. (13)

In the view of (9), (13), (A2), (A3) and the Lebesgue dominated convergence theorem, we
get

lim
n→∞

∫ T

0

∫
Ω
a(x, t,∇un)∇(un − u)dxdt = 0. (14)

From (12) and (14), we have

lim
n→∞

∫
Q

[
a(x, t,∇un)− a(x, t,∇u)

]
∇(un − u)dx = 0.

In light of Lemma 3, we obtain

un −→ u strongly in V,

which implies that F is of type (S+).
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Proof of Theorem 1.
Let us consider the following operator L defined from V ⊃ D(L) into its dual V∗, such that

D(L) =
{
v ∈ V : v′ ∈ V∗, v(0) = 0

}
,

by

〈Lu, v〉 = −
∫
Q
uvdxdt, for all u ∈ D(L), v ∈ V.

Consequently, the operator L is generated by ∂/∂t by means of the relation

〈Lu, v〉 =

∫ T

0
〈u′(t), v(t)〉dt, for all u ∈ D(L), v ∈ V.

We can confirm, like in Zeider (1990) that L is a densely defined maximal monotone operator.
Combining the condition of connectivity (A4) and the monotonicity of L

(
〈Lu, u〉 ≥ 0 for all

u ∈ D(L)
)
, we obtain

〈Lu+ Fu, u〉 ≥ 〈Fu, u〉

=

∫ T

0
M
(∫

Ω
A(x, t,∇u)dx

)∫
Ω
a(x, t,∇u)∇udxdt

≥
∫ T

0
m0

∫
Ω
a(x, t,∇u)∇udxdt

≥ m0

∫
Q
a(x, t,∇u)∇udxdt (15)

≥ m0

∫
Q
|∇u|pdxdt

= C ′‖u‖pV

for all u ∈ V.
Since the right hand side in (15) tends to ∞ as ‖u‖V → ∞, so for every g ∈ V∗ there exists
R = R(g) for which 〈Lu+ Fu− g, u〉 > 0 for all u ∈ BR(0) ∩D(L).
By using the Lemma 1, we infer that the equation Lu+ Fu = g is solvable in D(L).
Which implies that the problem (1) admits at least one weak solution. This ends the proof.
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